P ——— T] il L -

DAVE'S TEST DRIVE

TRIGGER-HAPPY

ALDITING

THIS MONTH OUR INDEPENDENT SOFTWARE TESTER DAVE
GEORGE INVESTIGATES COSYN SOFTWARE'S AUDIT TRAIL/400,
A TOOL HE SAYS WAS JUST WAITING TO BE INVENTED

Auditing is a strange area of iSeries applica-
tion design. Strange in that it always seems
to be an afterthought, and even stranger in the

methods used to deploy it. In accounting, an audit
trail is the sequence of paperwork that validates or
invalidates accounting entries. In computing, the
term is also used for an electronic or paper log
used to track computer activity.

For example, a corporate employee might have
access to a section of a network in a corporation
such as billing, but be unauthorised to access all
otlier sections. If that employee attempts to access
an unauthorised section by typing in passwords,
this improper activity is recorded in the audit trail.
And this type of activity is commonly attributed to
systems security auditing, to ensure that access to
areas of the system is not mistreated.

There is often a requirement for an even lower
level of auditing, that of recording events pertain-
ing to the activity applied to the application data-
base. The data audit requirement would normally
be to record transactions made on certain key files
that will be able to trace changes from the origin of
the data to its current position. Traditionally, audit-
ing capabilities on iSeries applications have been
added to the application by either building audit
files into the application, or by using journals to
record each changed record. Each of these methods
had their own problems.

Using the application to record data changes
internal to the application meant that changes
made outside of the application just didn’t get
recorded. Using journals to record changed data
offers more than just auditing capabilities, but
requires that the whole record be saved and does

20 8 OCTOBER 2002 B iSeries NEWS UK

not offer field level auditing. Journaling also man-
ages to bring on a cold sweat at the mere mention
of its name.

With the arrival of DB2 triggers, a method of file
auditing was introduced that provided just what
the audit doctor ordered — an auditing method
bound to the file that is invoked whenever the trig-
ger criteria is met independent of the application,
and configurable using a trigger program that can
record specific fields and not whole records. Of
course, triggers were never embraced in the way
that IBM intended, and may have had more of a
frightening effect than journals!

BRIGHT SPARKS

The auditing method was there, the auditing
requirement was there, all that was needed was for
some bright sparks to tie it all together and produce
a simple, structured, comprehensive management
application to plug the gap. Enter Audit Trail/400.

The developers at New Zealand-based Cosyn
Software Limited are the authors of Audit
Trail/400, which strives to provide a comprehen-
sive audit trail and reporting mechanism using
only a handful of set-up requirements.

Before jumping into the product, it is worth
appreciating what requirements the product
intends to fulfil. Audit Trail/400 is a specific opti-
mised suite of programs to provide a method of
recording changes to critical master files whose
data content requires control. Ideally, this is best
suited to record changes made to critical master
files. It also gives a certain edge over recording
changes made to transactional data via journals, in
that it allows you to record just the data fields you

wish to capture.

As with all good utilities, the product strives to
remove the complexity and facilitate easier and
standard access via tools for managing the auditing
of data; careful consideration is required in build-
ing the plan for auditing your shop’s data.
Therefore, an understanding of the framework of
the software applications involved, their interac-
tion with the database, as well as clear, firm
requirements for auditing, are mandatory for
achieving success.

B [Wos Compumcolion Miong Window Hep

B D0 2% B8 o b/

" Carvadtnd b remate perverFok FLABATE g port 71

FIGURE 1

Dl S0 5 LPT)

Operationally, the system is extremely simple to
use and requires only a minimal number of choices
to establish your trail (see Figure 1). For example,
Select Library, Select File to use, Select key fields
from file, Select fields to Audit and so on. The only
other addition to the set-up is to choose which audit
fields that you require Audit Trail/400 to add to the
audit records, such as date/time, user, job, program,
member etc, to give body to the audit trail.

Interestingly, only libraries that are in the user
portion of the library list and that are not system
libraries (ie not prefixed with ‘Q’) are available for
selection, which requires a user library to be man-
ually added to the job’s library list if it does not
currently exist. While running Audit Trail/400,
the COSYN product library is not available for
audit (obviously). Any user libraries that may be
in the system portion of the library list are not
available either, but this will be added to a future
release of the product.

The main requirement for creating an audit trail
is that the physical file must be externally
described and contain at least two fields, one of
which will be defined as a key field and the other
as a field to be audited. Once the audit information

has been specified, a trigger is built from the spec-
ified definition and applied to the selected file by
an Audit Trail/400 batch function. From now on,
any updates to the selected file affecting a traced
field will result in the change being added into the
audit trail file created by Audit Trail/400. The audit
definition can be managed accordingly; either sus-
pended, resumed, cleared, deleted or changed.
Each change invokes a new version of the audit
files, so that existing data may be retained.

While this seems a flawless operation so far, there
are a few additional caveats. Multi member files are
supported within Audit Trail/400 but, by the cur-
rent definition of a trigger, it is applied to the whole
file and not just a particular member. Audit
Trail/400 handles this by allowing the definition to
record all members, a single member or selected
members. This is defined in the trail definition.

Currently (with V5R1), only 300 triggers can
be added to a single physical file. This means that
Audit Trail/400 will happily coexist with a file
that has triggers for other applications, up to the
allowed maximum. While it is unlikely that a
master file will already have so many triggers,
Audit Trail/400 will issue a warning, indicating
the implications of adding a trigger to an already
triggered physical file. Prior to V5R1, a physical
file was only allowed one ‘before’ and one ‘after’
the trigger program. To get round this, an API
call is provided for hooking into the Audit
Trail/400 trigger program from your own trigger
wrappers.

Triggers cannot be added to a file that is in use.
If you attempt to add a trail to an in-use file you
are presented with a list of object locks, and an
option to have the trigger submitted later when the
file is unlocked.

At this point we begin to look at what we are
generating within the audit trail. The initial

'‘AS WITH ALL GOOD UTILITIES, THE PRODUCT
STRIVES TO REMOVE THE COMPLEXITY AND

FACILITATE EASIER AND STANDARD ACCESS VIA
TOOLS FOR MANAGING THE AUDITING OF DATA

DAVES TEST DRIVE

DAVE GEORGE IS
THE EDITOR OF 400
TIMES
WWW.400TIMES.CO.UK

FIGURE 2

build of the audit trail file, created by adding a trig-
ger to the file, builds a database file with a file def-
inition that is equal to the required audit fields
(user, time, job etc.) and the tracked fields from the
original physical files. These field attributes are
derived from the original files, and therefore are a
true representation of the data, and not data
strings that require analysis using additional pro-
grams or data structures (see Figure 2).

The file data is in an unencrypted data format; it
is open to modification via the same methods that
may have updated the original data - for example,
a program, DFU, SQL etc. I would have preferred to
see the data stored in encrypted form and only vis-
ible via Audit Trail/400 functions. However, by
having the data available to HLL programs, SQL
and Query/400, it means that the reproduction of
audit data can be presented in any number of ways
to suit any corporation’s requirements.

Once a physical file is being tracked, the trail
data can be reproduced by either online displays or
by standard reports. Both reports and displays have
a highly configurable feel to them, allowing you to
select various filters and sorts, as well as which
fields to display, providing a clean, consistent view
into the change activity within a data set (see
Figures 3 and 4).

The audit track files created by Audit Trail/400

FIGURE 3

Sepsion D [24w BO)
Ge PRt [rawler Apgewsrce (ommumcabon Asgst Yindew g

L L

st 18 pemcts perver fhost PAMDASE using port 13

ee B OCTOBER 2002 B iSeries NEWS UK

oy b neincle Lerwen ot PN | mng st 1

FIGURE 4

reside in the same library as the original data file,
so that in the case of a restore being required, the
audit file and tracked version can be restored
simultaneously. This illustrates just one of many of
the steps taken within Audit Trail/400 to ensure
the integrity of the data capture. However,
increased awareness of the existence of the audit
files in production libraries is necessary to ensure
that they are not deleted.

DEEPLY SATISFYING

Minor criticisms aside, Audit Trail/400 does pro-
vide seamless (V5R1 and higher) and near seam-
less data auditing (pre-V5R1) in a consistent, sim-
ple-to-manage fashion, with easy-to-read, config-
urable tracing tools which would satisfy many
auditing requirements. It provides an optimised
data capture solution, while shielding administra-
tors from a lot of the complexity of database trig-
gers. With just an understanding of the way trig-
gers impact the software, and vice versa, an admin-
istrator could effortlessly track data, without the
overhead of adding many custom auditing rou-
tines, and without studying the ins and outs of trig-
gers separately.

While testing was carried out on simple files
with a small data set using SQL and DFU to issue
updates, it was clear to see how a few simple
actions could be easily deployed across a whole
mountain of enterprise data. Although no immedi-
ate performance degradation was detected by the
introduction of the DB trigger, larger-scale testing
would be necessary to assess its impact.

The most prominent quality of an auditing tool
of this stature is that it gives you a basis of consis-
tent auditing of all applications deployed on your
system, regardless of whether they are in-house or
third party applications. Ever seen an auditor jump
with joy? Who knows, you just might! @

More details and a time-limited demo can be
obtained by visiting www.cosynsoftware.com.

